46 research outputs found

    Atomic Parity Nonconservation and Nuclear Anapole Moments

    Get PDF
    Anapole moments are parity-odd, time-reversal-even moments of the E1 projection of the electromagnetic current. Although it was recognized, soon after the discovery of parity violation in the weak interaction, that elementary particles and composite systems like nuclei must have anapole moments, it proved difficult to isolate this weak radiative correction. The first successful measurement, an extraction of the nuclear anapole moment of 133Cs from the hyperfine dependence of the atomic parity violation, was obtained only recently. An important anapole moment bound in Tl also exists. We discuss these measurements and their significance as tests of the hadronic weak interaction, focusing on the mechanisms that operate within the nucleus to generate the anapole moment. The atomic results place new constraints on weak meson-nucleon couplings, ones we compare to existing bounds from a variety of p-p and nuclear tests of parity nonconservation.Comment: 35 pages; 8 figures; late

    Effective Field Theory for Few-Nucleon Systems

    Full text link
    We review the effective field theories (EFTs) developed for few-nucleon systems. These EFTs are controlled expansions in momenta, where certain (leading-order) interactions are summed to all orders. At low energies, an EFT with only contact interactions allows a detailed analysis of renormalization in a non-perturbative context and uncovers novel asymptotic behavior. Manifestly model-independent calculations can be carried out to high orders, leading to high precision. At higher energies, an EFT that includes pion fields justifies and extends the traditional framework of phenomenological potentials. The correct treatment of QCD symmetries ensures a connection with lattice QCD. Several tests and prospects of these EFTs are discussed.Comment: 55 pages, 18 figures, to appear in Ann. Rev. Nucl. Part. Sci. 52 (2002

    Local three-nucleon interaction from chiral effective field theory

    Get PDF
    The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-to-next-to-leading order (N2LO) is regulated with a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is then local in the coordinate space, which is advantages for some many-body techniques. Matrix elements of the local chiral NNN interaction are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN matrix elements are employed in 3H and 4He bound-state calculations.Comment: 17 pages, 9 figure

    Strangeness in the nucleon and the ratio of proton-to-neutron neutrino-induced quasi-elastic yield

    Get PDF
    The electroweak form factors of the nucleon as obtained within a three flavor pseudoscalar vector meson soliton model are employed to predict the ratio of the proton and neutron yields from 12C^{12}C, which are induced by quasi-elastic neutrino reactions. These predictions are found to vary only moderately in the parameter space allowed by the model. The antineutrino flux of the up-coming experiment determining this ratio was previously overestimated. The corresponding correction is shown to have only a small effect on the predicted ratio. However, it is found that the experimental result for the ratio crucially depends on an accurate measurement of the energy of the knocked out nucleon.Comment: 17 pages, LaTeX, 2 tables, 4 figures, Discussion on shape of strange form factors added, Z. Phys. A, to be publishe

    Baryon-Baryon Interactions

    Full text link
    After a short survey of some topics of interest in the study of baryon-baryon scattering, the recent Nijmegen energy dependent partial wave analysis (PWA) of the nucleon-nucleon data is reviewed. In this PWA the energy range for both pp and np is now 0 < Tlab < 350 MeV and a chi^2_{d.o.f.}=1.08 was reached. The implications for the pion-nucleon coupling constants are discussed. Comments are made with respect to recent discussions around this coupling constant in the literature. In the second part, we briefly sketch the picture of the baryon in several, more or less QCD-based, quark-models that have been rather prominent in the literature. Inspired by these pictures we constructed a new soft-core model for the nucleon-nucleon interaction and present the first results of this model in a chi^2 -fit to the new multi-energy Nijmegen PWA. With this new model we succeeded in narrowing the gap between theory and experiment at low energies. For the energies Tlab = 25-320 MeV we reached a record low chi^2_{p.d.p.} = 1.16. We finish the paper with some conclusions and an outlook describing the extension of the new model to baryon-baryon scattering.Comment: 12 pages LaTeX and one postscript figure included. Invited talk presented at the XIVth European Conference of Few-Body Problems in Physics, Amsterdam, August 23-28, 199

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process

    Get PDF
    Inspired by the famous “lotus effect”, we have fabricated the super-hydrophobic surfaces with nickel film on copper substrates using a one-step electrodeposition method. By adjusting processing time, water contact angle of as-prepared surfaces can reach as high as 160.3 ± 1.5° with small rolling angle of 3.0 ± 0.5°, showing excellent super-hydrophobicity. After the deposition of nickel coating, the pristine copper surfaces became much rough with packed cauliflower-/thorn-like clusters. This unique surface texture contributed to trapping large amount of air and forming the air cushion underneath the water droplet, which can prevent the liquids contacting the copper substrate. The examination of surface chemical compositions implied that the deposited super-hydrophobic coating consisted of nickel crystals and nickel myristate. In this research, the formation mechanism of the electrodeposited super-hydrophobicity was extensively explained based on the analyses of surface texture and surface chemistry. Moreover, the corrosion resistance of the as-fabricated super-hydrophobic surface was estimated by the potentiodynamic polarization tests as well as the electrochemical impedance spectroscopy (EIS) measurements. The results demonstrate that the super-hydrophobic nickel coating showed excellent corrosion inhibition in simulated seawater solution. The existence of the super-hydrophobic coating could be regarded as a barrier and thus provide a perfect air-liquid interface that inhibits the penetration of the corrosive ions. This facile and effective method of electrodeposition process offers a promising approach for mass production of super-hydrophobic surfaces on various metals

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems

    Get PDF
    Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii
    corecore